Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Virus Evol ; 10(1): veae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562953

RESUMO

Despite extensive scientific efforts directed toward the evolutionary trajectory of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans at the beginning of the COVID-19 epidemic, it remains unclear how the virus jumped into and evolved in humans so far. Herein, we recruited almost all adult coronavirus disease 2019 (COVID-19) cases appeared locally or imported from abroad during the first 8 months of the outbreak in Shanghai. From these patients, SARS-CoV-2 genomes occupying the important phylogenetic positions in the virus phylogeny were recovered. Phylogenetic and mutational landscape analyses of viral genomes recovered here and those collected in and outside of China revealed that all known SARS-CoV-2 variants exhibited the evolutionary continuity despite the co-circulation of multiple lineages during the early period of the epidemic. Various mutations have driven the rapid SARS-CoV-2 diversification, and some of them favor its better adaptation and circulation in humans, which may have determined the waxing and waning of various lineages.

2.
Dalton Trans ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587851

RESUMO

Separation of lanthanide (Ln) and minor actinide (MA) elements and mutual separation between minor actinide elements (e.g. Am(III) and Cm(III)) represent a crucial undertaking. However, separating these elements poses a significant challenge owing to their highly similar physicochemical properties. Asymmetric N-heterocyclic ligands such as N-ethyl-6-(1H-pyrazol-3-yl)-N-(p-tolyl)picolinamide (Et-p-Tol-A-PzPy) and N-ethyl-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (ETPhenAm) have recently received considerable attention in the separation of MAs over Ln from acid solutions. By changing the central skeleton structures of these ligands and introducing substituents with different properties on the side chains, their complexation behavior with Am(III), Cm(III), and Eu(III) may be affected. In this work, we explore four different asymmetric N-containing heterocyclic ligands, namely Et-p-Tol-A-PzPy (L1), N-ethyl-6'-(1H-pyrazol-3-yl)-N-(p-tolyl)-[2,2'-bipyridine]-6-carboxamide (L2), N-ethyl-9-(1H-pyrazol-3-yl)-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (L3), and ETPhenAm (L4) using density functional theory (DFT). The calculated results demonstrate the potential of ligands L1-L4 for the extraction and separation of Am(III), Cm(III), and Eu(III). Ligand analysis shows that ligand L3 binds more easily to the central metal atom, in line with the stronger extraction capacity of L3. In spite of the higher covalence between the side chain and the central metal atom for complexes with L1-L3, the main chain seems to control the stability of the extraction complexes. The preorganized 1,10-phenanthroline backbone also further enhances the extraction performance of L3 and L4. The difference in coordination ability between the side chain donors of these ligands and metal ions may affect their separation efficiency. This work presents theoretical insights into synthesizing novel ligands for separating trivalent actinides by adjusting N-heterocyclic ligands.

3.
Bioorg Chem ; 146: 107327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579616

RESUMO

Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.


Assuntos
Morte Celular Autofágica , Neoplasias Colorretais , Sirtuína 3 , Humanos , Neoplasias Colorretais/metabolismo , Autofagia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
4.
J Exp Bot ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655916

RESUMO

Endocytic recycling is an intracellular trafficking pathway that returns endocytosed molecules to the plasma membrane (PM) via the recycling endosome. This pathway plays a crucial role in remodeling PM composition and is thus essential for normal cellular homeostasis. In plants, endocytic recycling regulates the localization and abundance of receptors, transporters, and channels at the PM that are involved in many aspects of plant growth and development. Despite its importance, the recycling endosome and the underlying sorting mechanisms for cargo recycling in plants remain understudied in comparison to the endocytic recycling pathways of animal systems. In this review, we focus on the cumulative evidence suggesting the existence of endosomes decorated by regulators that contribute to recycling in plant cells. We summarize the chemical inhibitors used for analyzing cargo recycling and discuss recent advances in our understanding of how endocytic recycling participates in various plant cellular and physiological events.

5.
Food Funct ; 15(8): 4614-4626, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38590249

RESUMO

The role of vitamin D (VD) in non-alcoholic fatty liver disease (NAFLD) remains controversial, possibly due to the differential effects of various forms of VD. In our study, Sod1 gene knockout (SKO) mice were utilized as lean NAFLD models, which were administered 15 000 IU VD3 per kg diet, or intraperitoneally injected with the active VD analog calcipotriol for 12 weeks. We found that VD3 exacerbated hepatic steatosis in SKO mice, with an increase in the levels of Cd36, Fatp2, Dgat2, and CEBPA. However, calcipotriol exerted no significant effect on hepatic steatosis. Calcipotriol inhibited the expression of Il-1a, Il-1b, Il-6, Adgre1, and TNF, with a reduction of NFκB phosphorylation in SKO mice. No effect was observed by either VD3 or calcipotriol on hepatocyte injury and hepatic fibrosis. Co-immunofluorescence stains of CD68, a liver macrophage marker, and VDR showed that calcipotriol reduced CD68 positive cells, and increased the colocalization of VDR with CD68. However, VD3 elevated hepatocyte VDR expression, with no substantial effect on the colocalization of VDR with CD68. Finally, we found that VD3 increased the levels of serum 25(OH)D3 and 24,25(OH)2D3, whereas calcipotriol decreased both. Both VD3 and calcipotriol did not disturb serum calcium and phosphate levels. In summary, our study found that VD3 accentuated hepatic steatosis, while calcipotriol diminished inflammation levels in SKO mice, and the difference might stem from their distinct cellular selectivity in activating VDR. This study provides a reference for the application of VD in the treatment of lean NAFLD.


Assuntos
Calcitriol , Calcitriol/análogos & derivados , Colecalciferol , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Calcitriol/farmacologia , Camundongos , Colecalciferol/farmacologia , Masculino , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais de Doenças
6.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617528

RESUMO

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Assuntos
Interleucina-10 , Infarto do Miocárdio , Adulto , Humanos , Interleucina-10/genética , Optogenética , Infarto do Miocárdio/terapia , Nervo Vago , Miócitos Cardíacos
7.
Front Plant Sci ; 15: 1358367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533407

RESUMO

Introduction: Variation in plant nitrogen uptake rate and substrate preference is complicated due to the combined influence of abiotic and biotic factors. For the same species of tree across different ages, the interactions between root structural traits, nitrogen uptake rate, and soil environment have not been fully characterized, a situation that constrains our understanding of underground resource strategies employed by trees at different ages. Methods: In the present study, we examined the nitrogen uptake rate, mycorrhiza, morphology, architecture, and chemistry of the roots of Larix principis-rupprechtii in a chronosequence (aged 18, 27, 37, 46, and 57 years) in the Saihanba Mechanical Forest Farm in Northern China. Results: L. principis-rupprechtii preferred to absorb ammonium, followed in order by glycine and nitrate. The ammonium uptake rate of L. principis-rupprechtii significantly decreased (aged 18-37 years) and then increased (aged 46-57 years) with tree age. The glycine, nitrate, and total nitrogen uptake rates decreased with tree age. The root resource acquisition strategy appeared to shift from an acquisitive strategy to a conservative strategy associated with increasing tree age. Discussion: Along the root-mycorrhizal collaboration gradient, the younger L. principis-rupprechtii relied more on their own root morphology and physiology to acquire resources, adopting a "do it yourself" strategy comprising increasing the specific root length, the specific root area, and the N uptake rate (nitrate and glycine). Conversely, older trees depended more on mycorrhizal partners to acquire nitrogen resources, an "outsourcing" strategy. The results contribute to our understanding of underground resource-use strategies of plants and the nitrogen cycle in forest ecosystems according to stand age.

8.
Front Oncol ; 14: 1340872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463235

RESUMO

Objective: At present, the structure of knowledge in the field of childhood thyroid cancer is not clear enough, and scholars lack a sufficient understanding of the developing trends in this field, which has led to a shortage of forward-looking outputs. The purpose of this research is to help scholars construct a complete knowledge framework and identify current challenges, opportunities, and development trends. Methods: We searched the literature in the Web of Science Core Collection database on August 7, 2023 and extracted key information from the top 100 most cited articles, such as the countries, institutions, authors, themes, and keywords. We used bibliometric tools such as bibliometrix, VOSviewer, and CiteSpace for a visualization analysis and Excel for statistical descriptions. Results: The top 100 most cited articles fluctuated over time, and the research was concentrated in European countries, the United States, and Japan, among which scientific research institutions and scholars from the United States made outstanding contributions. Keyword analysis revealed that research has shifted from simple treatment methods for pediatric thyroid cancer (total thyroidectomy) and inducing factors (the Chernobyl power station accident) to the clinical applications of genetic mutations (such as the BRAF and RET genes) and larger-scale genetic changes (mutation studies of the DICER1 gene). The thematic strategy analysis showed an increasing trend towards the popularity of fusion oncogenes, while the popularity of research on traditional treatments and diagnostics has gradually declined. Conclusion: Extensive research has been conducted on the basic problems of pediatric thyroid cancer, and there has been significant outputs in the follow-up and cohort analysis of conventional diagnostic and treatment methods. However, these methods still have certain limitations. Therefore, scholars should focus on exploring fusion genes, the clinical applications of molecular targets, and novel treatment methods. This study provides a strong reference for scholars in this field.

9.
Cardiovasc Diagn Ther ; 14(1): 84-100, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434559

RESUMO

Background: Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4)-mediated reactive oxygen species (ROS) has been reported to induce cardiomyocyte apoptosis, but its effect on pyroptosis of cardiomyocytes has been rarely reported. This paper aimed to explore the effects of NOX4-mediated ROS production on doxorubicin (DOX)-induced myocardial injury and pyroptosis through nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. Methods: HL-1 cells were treated with DOX or mice (30 mice were divided into five groups with six mice/group) underwent intraperitoneal injection with DOX (5 mg/kg, once a week, five times) to induce myocardial injury, followed by assessment of NOX4 and NLRP3 expression in cell supernatant and myocardial tissues. In cardiomyocyte HL-1 cells, cell proliferation was tested by MTT assay and the activity of ROS by probes. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and glutathione (GSH) activity were evaluated by kits. The expression of pyroptosis proteins was assessed by western blotting. Subsequently, the expression of NOX4 or NLRP3 was altered to determine the effect of NOX4 or NLRP3 expression on cardiomyocyte injury and pyroptosis. The animal models were utilized to evaluate the changes in the cardiac function of mice using an echocardiographic system, with these parameters measured including left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and left ventricular end-diastolic diameter (LVEDD). Furthermore, the content of myocardial injury markers and the protein expression of pyroptosis proteins were determined to evaluate myocardial injury in the mice. Results: DOX treatment led to cardiomyocyte injury and pyroptosis, as evidenced by weakened LVEF, LVFS, and cell proliferation (P<0.05), elevated LVEDD, ROS, and MDA (P<0.05), increased expression of pyroptosis proteins (P<0.05), and decreased SOD and GSH (P<0.05). Additionally, NOX4 and NLRP3 were highly-expressed (P<0.05) in cell supernatant and myocardial tissues. In DOX-induced HL-1 cells, the overexpression of NOX4 intensified ROS levels to aggravate cardiomyocyte injury and pyroptosis, which was reversed by treatment of the ROS scavenger N-acetyl-cysteine. Furthermore, it was revealed that the combination of short hairpin RNA (sh)-NOX4 and overexpressed (oe)-NLRP3 reversed the cardioprotective effects of sh-NOX4 and increased myocardial tissue or cell injury and pyroptosis in vitro and in vivo. No mice died during the animal experiments, and only two were ruled out due to a weight loss greater than 20%. Conclusions: NOX4-mediated ROS production activated NLRP3 inflammasome, thereby aggravating DOX-induced myocardial injury in vitro and in vivo.

10.
Bioorg Chem ; 144: 107180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335758

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Benzotiazóis/farmacologia
11.
Biochem Biophys Res Commun ; 703: 149667, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382362

RESUMO

Trimethylamine N-oxide (TMAO) is a novel risk factor for atherosclerosis, and its underlying regulatory mechanisms are under intensive investigation. Inflammation-related vascular endothelial damage is the major driver in atherogenic process. Pyroptosis, a type of proinflammatory programmed cell death, has been proved to promote the initiation and progression of atherosclerosis. In our study, we found that TMAO triggered endothelial cells excessive mitophagy, thereby facilitating pyroptosis. This process is mediated by the upexpression of phosphatidylethanolamine acyltransferase (LPEAT). These findings provide insights into TMAO-induced vascular endothelial cell damage and suggest that LPEAT may be a valuable target for the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Piroptose , Mitofagia , Metilaminas/farmacologia , Metilaminas/metabolismo , Aterosclerose/metabolismo
12.
Dalton Trans ; 53(11): 5222-5229, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38391031

RESUMO

The structure of organic ligand scaffolds of copper complexes critically affects their electrocatalytic properties toward water oxidation, which is widely regarded as the bottleneck of overall water splitting. Herein, two novel mononuclear Cu complexes, [Cu(dmabpy)](ClO4)2 (1, dmabpy = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine) and [Cu(mabpy)](ClO4)2 (2, mabpy = 6,6'-bis(methylaminomethyl)-2,2'-bipyridine), with four-coordinated distorted planar quadrilateral geometry were synthesized and explored as efficient catalysts for electrochemical oxygen evolution in phosphate buffer solution. Interestingly, complex 1 with a tertiary amine group catalyzes water oxidation with lower onset overpotential and better catalytic performance, while complex 2 containing a secondary amine fragment displays much lower catalytic activity under identical conditions. The water oxidation catalytic mechanism of the two complexes is proposed based on the electrochemical test results. Experimental methods indicate that phosphate coordinated on the Cu center of the two complexes inhibits their reaction with substrate water molecules, resulting in lower activity toward water oxidation. Electrochemical tests reveal that the structure of the coordinated nitrogen atom improves the catalytic performance of the Cu complexes by modulating the coordination of phosphate on the Cu center, indicating that a minor alteration of the coordinating nitrogen atom of the ligand has a detrimental effect on the catalytic performance of electrochemical WOCs based on transition metal complexes.

13.
Trends Plant Sci ; 29(2): 117-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968199

RESUMO

Calcium-dependent protein kinases (CDPKs) are a multigene protein kinase family that have key regulatory roles in plants. However, imaging CDPK signals in plant cells remains challenging. The recently developed genetically encoded CDPK-Förster resonance energy transfer (FRET) reporter developed by Liese et al. allows visualization of calcium (Ca2+)-dependent conformational changes during activation or inactivation of CDPKs, providing a powerful tool for real-time monitoring of calcium decoding in plants.


Assuntos
Cálcio , Plantas , Cálcio/metabolismo , Plantas/genética , Plantas/metabolismo
14.
Neurochem Res ; 49(2): 492-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955816

RESUMO

Autophagy is a conserved lysosomal degradation process that has recently been found to be associated with stress-related psychological diseases. However, previous studies have yielded inconsistent results regarding the effects of various stress patterns on autophagy in different brain regions. This discrepancy may arise from differences in autophagy flux across nuclei, the type of stress experienced, and the timing of autophagy assessment after stress exposure. In this study, we assessed autophagy flux in the rat hippocampus (HPC), medial prefrontal cortex (mPFC), and basal lateral amygdala (BLA) by quantifying protein levels of p-ULK1, LC3-I, LC3-II, and p62 via Western blot analysis at 15 min, 30 min, and 60 min following various stress paradigms: restraint stress, foot shock, single corticosterone injection, and chronic corticosterone treatment. We found that: (1) hippocampal autophagy decreased within 1 h of restraint stress, foot shock, and corticosterone injection, except for a transient increase at 30 min after restraint stress; (2) autophagy increased 1 h after restraint stress and corticosterone injection but decreased 1 h after foot shock in mPFC; (3) In BLA, autophagy increased 1 h after foot shock and corticosterone injection but decreased 1 h after restraint stress; (4) Chronic corticosterone increased autophagy in mPFC and BLA but had no effects in HPC. These findings suggest that stress regulates autophagy in a brain region- and stressor-specific manner within 1 h after stress exposure, which may contribute to the development of stress-related psychological disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Animais , Corticosterona/farmacologia , Corticosterona/metabolismo , Córtex Pré-Frontal/metabolismo , Encéfalo , Hipocampo/metabolismo , Restrição Física , Estresse Psicológico/metabolismo
15.
Diagn Microbiol Infect Dis ; 108(2): 116128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007912

RESUMO

BACKGROUND: Rifampicin (RIF) and multidrug-resistant tuberculosis (TB) are major public health threats. As conventional phenotypic drug susceptibility testing requires two-eight weeks, molecular diagnostic assays are widely used to determine drug resistance. METHODS: Clinical Mycobacterium tuberculosis isolates with consistent drug susceptibility results, tested using microbroth dilution and proportion methods in Löwenstein-Jensen medium from patients with TB in Guangdong province were utilized to evaluate MeltPro TB and whole-genome sequencing (WGS) assays in detecting resistance to RIF, isoniazid (INH), ethambutol (EMB), fluoroquinolones (FQ), and streptomycin (SM). Solid phenotypic drug susceptibility testing was used as the gold standard to evaluate the detection capacity of MeltPro TB on clinical sputum samples of patients with TB. RESULTS: Similar to WGS, MeltPro TB successfully detected RIF, INH, and SM resistance with sensitivities of 86.3, 84.8, and 86.6 %, respectively. However, the resistant isolate detection rates were only 58.1 and 69.6 % for EMB and FQ-resistant strains. For clinical specimens, MeltPro TB still showed good detectable rates of RIF and INH resistance, with sensitivities of 82.4 % and 95.2 %, respectively. Detectable rates of FQ and EMB resistance were low: 77.8 % and 35.3 %, respectively. CONCLUSIONS: MeltPro TB can detect known DNA mutations associated with drug resistance in Mycobacterium tuberculosis strains with comparable efficacy to WGS. For FQ and EMB resistance testing, MeltPro TB requires optimization and is unsuitable for general use. MeltPro TB can be used for diagnosis of RIF and multidrug-resistant tuberculosis to rapidly initiate appropriate anti-TB drug therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Isoniazida , Etambutol , Rifampina/farmacologia , Rifampina/uso terapêutico , Fluoroquinolonas/uso terapêutico , Mutação , China/epidemiologia
16.
Adv Mater ; 36(1): e2302686, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37665792

RESUMO

The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.


Assuntos
Quimiocina CXCL12 , Infarto do Miocárdio , Humanos , Quimiocina CXCL12/metabolismo , Hidrogéis , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Inflamação
17.
Heart Fail Rev ; 29(1): 113-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37823952

RESUMO

The progression of heart failure is reported to be strongly associated with homeostatic imbalance, such as mitochondrial dysfunction and abnormal autophagy, in the cardiomyocytes. Mitochondrial dysfunction triggers autophagic and cardiac dysfunction. In turn, abnormal autophagy impairs mitochondrial function and leads to apoptosis or autophagic cell death under certain circumstances. These events often occur concomitantly, forming a vicious cycle that exacerbates heart failure. However, the role of the crosstalk between mitochondrial dysfunction and abnormal autophagy in the development of heart failure remains obscure and the underlying mechanisms are mainly elusive. The potential role of the link between mitochondrial dysfunction and abnormal autophagy in heart failure progression has recently garnered attention. This review summarized recent advances of the interactions between mitochondria and autophagy during the development of heart failure.


Assuntos
Insuficiência Cardíaca , Doenças Mitocondriais , Humanos , Insuficiência Cardíaca/metabolismo , Autofagia/fisiologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Doenças Mitocondriais/metabolismo
18.
Brain Topogr ; 37(1): 75-87, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145437

RESUMO

The effects of short-term mindfulness are associated with the different patterns (autonomic, audio guided, or experienced and certified mindfulness instructor guided mindfulness). However, robust evidence for reported the impacts of different patterns of mindfulness on mental health and EEG biomarkers of undergraduates is currently lacking. Therefore, we aimed to test the hypotheses that mindfulness training for undergraduates would improve mental health, and increase alpha power over frontal region and theta power over midline region at the single electrode level. We also describe the distinction among frequency bands patterns in different sites of frontal and midline regions. 70 participants were enrolled and assigned to either 5-day mindfulness or a waiting list group. Subjective questionnaires measured mental health and other psychological indicators, and brain activity was recorded during various EEG tasks before and after the intervention. The 5-day mindfulness training improved trait mindfulness, especially observing (p = 0.001, d = 0.96) and nonreactivity (p = 0.03, d = 0.56), sleep quality (p = 0.001, d = 0.91), and social support (p = 0.001, d = 0.95) while not in affect. Meanwhile, the expected increase in the alpha power of frontal sites (p < 0.017, d > 0.84) at the single electrode level was confirmed by the current data rather than the theta. Interestingly, the alteration of low-beta power over the single electrode of the midline (p < 0.05, d > 0.71) was difference between groups. Short-term mindfulness improves practitioners' mental health, and the potentially electrophysiological biomarkers of mindfulness on neuron oscillations were alpha activity over frontal sites and low-beta activity over midline sites.


Assuntos
Eletroencefalografia , Atenção Plena , Humanos , Saúde Mental , Inquéritos e Questionários , Biomarcadores
19.
Bioresour Technol ; 394: 130216, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122994

RESUMO

Brewer's spent grain (BSG) is a main byproduct of the beer industry. BSG is rich in a variety of nutrients, and the search for its effective, high-value utilization is ongoing. Environmental probiotic factor γ-PGA was produced by fermenting Bacillus subtilis with BSG substrate and the fermenting grain components were analyzed. The γ-PGA yield reached 31.58 ± 0.21 g/kg of BSG. Gas chromatography-mass spectrometry and non-targeted metabolomics analyses revealed 73 new volatile substances in the fermenting grains. Furthermore, 2,376 metabolites were upregulated after fermentation and several components were beneficial for plant growth and development (such as ectoine, acetyl eugenol, L-phenylalanine, niacin, isoprene, pantothenic acid, dopamine, glycine, proline, jasmonic acid, etc). These results show that it is possible to synthesize adequate amounts of γ-PGA for use as a functional fertilizer.


Assuntos
Fertilizantes , Ácido Poliglutâmico , Fermentação , Fertilizantes/análise , Grão Comestível/metabolismo
20.
Front Cardiovasc Med ; 10: 1237208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920179

RESUMO

Cardiac repair after myocardial infarction (MI) is orchestrated by multiple intrinsic mechanisms in the heart. Identifying cardiac cell heterogeneity and its effect on processes that mediate the ischemic myocardium repair may be key to developing novel therapeutics for preventing heart failure. With the rapid advancement of single-cell transcriptomics, recent studies have uncovered novel cardiac cell populations, dynamics of cell type composition, and molecular signatures of MI-associated cells at the single-cell level. In this review, we summarized the main findings during cardiac repair by applying single-cell transcriptomics, including endogenous myocardial regeneration, myocardial fibrosis, angiogenesis, and the immune microenvironment. Finally, we also discussed the integrative analysis of spatial multi-omics transcriptomics and single-cell transcriptomics. This review provided a basis for future studies to further advance the mechanism and development of therapeutic approaches for cardiac repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...